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ABSTRACT

This work investigates the application of evolutionary The simulated evolution, or evolutionary programming
programming, a stochastic search tedudque, for (EP), paradigm has been shown to have the desired
determining connectivity infeedforward neural networks. attributes: combinatorial optimization capabilitiee, the
The method is capable of simultaneously evolving both ability to determine model structure, and the ability to
the connection sdwe and the network weights. The train neural network.
number of synapses are incorporated into an objective
function so that network parameer optimization is done The premise of the current researdh is that near minimal
with respect to a connectivity cost as well as mean size neural network architectures can be evolved under an
pattern error. Erperimental results are shown using objective function which incorporates both neural network
feedforward networks for simple binary mapping connectivity and weight parameters. Further, the
problems. proposed approach takes advantage of computational

resources during the design/training phase thereby
removing the burden of evaluation by trial-and-error from

INTRODUCTION the designer. For purposes of discussion, Fig. I
illustrates the structure of a hypothetically evolved neural

The neural network design process is largely based on network where the connectivity between neurons is
heuristics. Previous experience (or the work of other determined via a multi-agent stochastic search technique.
researchers) often dictates an initial network Nodes which are not connected can be pruned. This work
configuration for the problem at hand. If the network extends previous research in evolving neural network
can be trained to achieve the designer's goals, the design architectures (where both the number of neurons and
process is terminated. If success is not attained, a connectivity are stochastically determined using EP') by
testing phase ensues and is largely trial and error. The investigating an alternative strategy to evolving neural
result can often be a network with excess parameters and network connectivity.
little regard for computational costs.

Similar work has been undertaken by Bornholdt and
In this research, a connectivity cost associated with the Graudenz' using genetic algorithms to determine both
neural network configuration is incorporated into the network structure and parameters. Due to the generality
optimization procedure in an effort to reduce the number of their implementation, recurrent networks can result
of synapses. An optimized architecture offers increased requiring multiple sweeps to reach a stable state. The
throughput for real-time signal processing applications as approach investigated in this work is limited to
well as decreased memory requirements. feedforward networks. The EP paradigm is outlined in

the next section along with its application to training
Simultaneously determining both network parameters and neural networks. This training method is then augmented
structure requires a search procedure which is amenable so that the connectivity between layers can be randomly
to combinatorial optimization. The more successful determined to yield a structure similar to that shown in
algorithms for these types of problems have generally Fig. 1. Finally, training results are given for simple
been stochastic search techniques such as simulated binary mapping problems.
annealing', genetic algorithms2 , and simulated evolution3 .



Determining Network Weights with EP

inputs Evolutionary programming can be used for training neural
networks. The selected objective function is the same as
that used in backpropagation: minimize the sum-squared
error function E = zEPEA,(t, -o,) over all patterns p for
k output neurons. The EP algorithm given in the previous

variable section is applied to determining neural network weightsconnectivity and then results are shown for sample training runs using

various scaling factors on the XOR mapping problem.

Initially, a population consisting of 2N feedforward
networks is generated. Each network in the population isoutputs represented by a multidimensional weight array 4t with

weights initially chosen from a U[-0.5, 0.5] distribution.

Figure 1. A hypothetically evolved network structure Next, a cost is assigned to each netwnrk in the population.
with variable connectdi,. This cost is typically the mean of the sum-squared pattern

error E previously discussed. The "best" N members of
the population generate offspring (perturbed weight sets)

APPLYING EP TO NEURAL NETS according to Wo=W,+6W, where 6WP is N(O, SFE,) with
a scaling coefficient SF and mean sum-squared pattern

Evolutionary Programming error EP for each parent network. The scaling factor is a
probabilistic analog to the stepsize used in gradient

Evolutionary programming is a neo-Darwinian search descent methods and may also be treated as a random
paradigm suggested by Fogel et al.3  This stochastic variable within the EP search strategy7 . The effect of the
search method is typically utilized as a global optimizer. scaling factor is shown in Fig. 2 for the XOR mapping.
EP has been successfully applied to a variety of The variance of the weight perturbations is bound by the
optimization problems including the traveling salesman total system error in this application. To emulate the
problem4 , parameter estimation and system probabilistic nature of survival, a pairwise competition is
identifications, and neural net training'. held where individual elements compete against randomly

chosen members of the population. For example, if
The EP optimization algorithm can be described by the network tj is randomly selected to compete against
following steps: network 4bi, a win is awarded to network obi if E, < Ej.

The N networks with the most "wins" are kept and the
1. Form an initial population PN,,(x) of size 2N. The process is repeated.
parameters x associated with parent element P, are
randomly initializedfrom a user specified search domain.
2. Assign a fitness score S,(x) to each element P,(x) in
the population.
3. Reorder the population based on the number of wins 0.12 .
generated from a stochastic competition process. 0 L, -
4. Generate offspring (P• .... P2-) of the highest -- _ -,

ranked N elements (Po .... P,-,) in the population by
perturbing x. 0,06 .

5. Loop to step 2. 004

002
In addition to providing a systematic means of stochastic . .o0
search, the generality of the EP optimization algorithm 10 20 40 50 W 0 80 90 100

lends power to its implementation. The user is not CNERATIO"

bound to any particular coding structure nor mutation
strategy. EP is used in this investigation since it is well Figure 2. EP training of a 2-2-1 XOR mapping network
suited for simultaneously evolving both model structure for various scaling factors.

and parameters.



EVOLVING CONNECTIVITY 2 _2•

This section investigates structural level adaptation within (n 1 -1 (-)2
the EP search. The objective function has been
modified to be a linearly weighted combination of the
number of connections NA, and the mean sum-squared Neurons which have high variance on their activation
pattern error levels will tend to be connected to other neurons. This

may also be viewed as promoting connections from
J = ceE + ON, neurons (which are essentially hyperplanes) that provide

a measure of discrimination on the feature space.
A heuristic which might be employed would be to let Neurons which have low variance on their activation

flt aE,/N. thereby incorporating the desired training levels correspond to hyperplanes which separate few data
error and the maximum possible number of connections points, and thereby provide little information to the
N. to reasonably weight the cost associated with the network.
evolved number of connections.

Synapses are randomly chosen as candidates for
Analogous to the weight array, a connectivity array has modification. If a chosen synapse is not connected then
been specified where (one of its elements) c = 1 if a it's probability of becoming connected is evaluated.
connection exists or c = 0 if no connection is present. Conversely, the probability of disconnection is calculated
A connectivity array that has all of its elements set to I if the synapse is connected. If al of the synapses were
yields a fully-connected feedforward network. The candidates for mutation during each generation, this would
designer must specify the number of hidden neurons over be a self-fidfilling strategy where a single neuron would
which the search is conducted. This determines the dominate. However, only a small number of randomly
maximum number of connections. In previovo work7 , a chosen synapses are evaluatated for mutation when
synapse was randomly chosen from the range of possible generating an offspring network. The probabilities of
connections and modified based on its current state. connection or disconnection are determined according to
That is, disconnected synapses were connected and the neuron's class. The three classes are self-evident with
connected synapses were disconnected. The number of the corresponding connection strategies as follows:
connections which may be affected at each mutation is
arbitrarily set by the designer or may even be determined hidden unit neuron: The probability of connection is
in a random fashion. The connectivity array is PC(Co) as calculated above, and the probability of
incorporated in the neuron output dot product term dis..onnection is determined as P/(CU,) = ( - Pc(Ct,))
thereby nulling any signals between disconnected
neurons. Weights are continually modified in the event input neuron: For the binary mappings used in these
that a neuron pair is reconnected. studies, the variance on the input units is constant and the

strategy used for the input neurons reduces to a uniform
In order to place an emphasis on signal propagation probabilistic connection strategy previously used7 . To
through the network, a strategy for connection and promote coupling effects between neurons, the connection
modification has been developed based on the activity probabilities are multiplied yielding the probability of
levels of a neuron. This strategy assigns a probability of connection P '(Ca)= P,(Cv)*P,(C+1,+,,). The
connection P, to the connection between neuron j in disconnection probability is determined in a similar
layer 1 and neuron 1: in layer 1+1, C,,, based upon the fashion according to P,'(C4,)= P/(C4,) * P/(CIIJt).
variance in neuron j's output over all of the patterns n,
in the training set bias neuron: Since the bias neurons are invariant, the

2 probability of connecting to any neuron is contingent upon

P01 the variance in the activation levels of that neuron. As a
)2 result, the probability of connecting to a given neuron is

Fa,, simply the probability of that neuron connecting to the
~i t next layer. Thus the connection probability of a bias

neuron can be given by P,(CU) = PJ(C+,.,,J). Likewise,
where the variance for neuron j in layer 1, a,, is its disconnection probability is given by P(Ce) =
determined from the activation or output levels a. over P/(Ca.+ ad.
the number of patterns n,



RESULTS Since only binary mapping problems were investigated, it

is not clear how the approach given in this study will

Experiments were conducted with N=10 parent work on classification or continuous mapping problems.
networks, or=1,f1=O.001, and S,=100 for the XOR and Nevertheless, stochastic training techniques are becoming
3-bit parity mappings using the probabilistic connection prevalent in neurocomputing (especially in hardware
criteria discussed above. The networks were initialized implementations'). During these investigations, issues in
with a random connection strategy as opposed to initially orthogonal learning (search) and population dynamics
being fully connected. Figures 3-6 show the results of became prevalent. These topics are being addressed in
using this criteria for the XOR mapping with 8 hidden future workv.
units. Figures 7 and 8 show an example of an evolved
network for the 3 bit parity problem with 16 hidden REFERENCES
units.
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